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Abstract 
 
Model Integrated Computing employs domain-

specific modeling languages for the design of 
Computer Based Systems and automatically generates 
their implementation. These system models are 
declarative in nature. However, for complex systems 
with regular structure, as well as for adaptive systems, 
a more algorithmic approach is better suited. 
Generative modeling employs architectural 
parameters and generator scripts to specify model 
structure. This paper describes an approach that 
enables the addition of generative modeling 
capabilities to any domain-specific modeling language 
using metamodel composition. The approach is 
illustrated through an image processing application 
using the Generic Modeling Environment (GME).  

 
 

1. Introduction 
 
Modeling and automatic code generation is the most 

promising way to increase software productivity. One 
approach employs a single modeling language developed 
specifically for software modeling to capture the 
important characteristics of the system under 
development and then generate a portion of the 
implementation automatically. The most prominent 
representative of this technique is the UML. Another 
approach advocates the use of domain-specific modeling 
languages, where the language is tailored for the unique 
needs of the target application domain. This approach 
enables the modeling of not only the software, but all 
other aspects of the target system, including its hardware, 
environment and their relationship. 

Model-Integrated Computing (MIC) is a 
representative of the latter approach. Both techniques 
need tool support to enable their practical application. If 
the language is fixed, in case of the UML for example, a 
single toolset is sufficient. However, creating domain-
specific visual model building, constraint management, 
and automatic program synthesis components for each 
new domain would be cost-prohibitive for most domains. 
The Generic Modeling Environment (GME) is a 
configurable environment that makes it possible to create 
highly domain-specific environments rapidly.  

The configuration is accomplished through UML and 
OCL-based [3,4] metamodels that specify the modeling 
paradigm (modeling language) of the application domain. 
The modeling paradigm contains all syntactic, semantic, 
and presentation information regarding the domain; 
which concepts will be used to construct models, what 
relationships may exist among these concepts, how the 
concepts may be organized and viewed by the modeler, 
and what rules govern the construction of the models. 
The modeling paradigm defines the family of models that 
can be created using the resulting modeling environment.  

The metamodels specifying the modeling paradigm 
are used to automatically generate the target domain-
specific environment. The generated domain-specific 
environment is then used to build domain models that are 
stored in a model database. These models are used to 
automatically generate the applications or to synthesize 
input to different COTS analysis tools. GME has an open 
component-based architecture. It allows access to 
metamodels, models and model modification events 
through a set of Microsoft COM interfaces. 

Just like most software models, models captured in 
GME are declarative. They describe a particular solution 
to a particular problem in the given engineering domain 
in a declarative manner. While this works very well most 



of the time, there are two cases where a more flexible 
approach is called for. When the models are large and 
have a regular, repetitive structure it is more natural to 
capture the information in an algorithmic manner. 
Similarly, adaptive systems are cumbersome, if not 
impossible to capture in a declarative way. 

One solution is to represent these architectures in a 
generative manner. Here, the components of the 
architecture are prepared, but their number and 
connectivity patterns are not fully specified. Instead, a 
generative description is provided that specify how the 
architecture should be generated "on-the-fly."  A 
generative architecture specification is similar to the 
generate statement used in VHDL: it is essentially a 
program that, when executed, generates an architecture 
by instantiating components and connecting them 
together. 

The generative description is especially powerful 
when it is combined with architectural parameters and 
hierarchical decomposition. In a component one can 
generatively represent architecture, and the generation 
"algorithm" can receive architectural parameters from the 
current or higher levels of the hierarchy. These 
parameters influence the architectural choices made (e.g. 
how many components to use, how they are connected, 
etc.), but they might also be propagated downward in the 
hierarchy to components at lower levels. There this 
process is repeated: architectural choices are made, 
components are instantiated and connected, and possibly 
newly calculated parameters are passed down further. 
Thus, with very few generative constructs one can 
represent a wide variety of architectures that would be 
very hard, if not impossible, to pre-enumerate. 

Our earlier work in self-adaptive systems 
demonstrated the power of generative modeling in one 
particular domain [5]. This paper describes the 
generalization of the approach. In particular, we have 
created a generative representation methodology that can 
be easily added to any domain-specific modeling 
language. The approach is based on metamodel 
composition. Furthermore, we have developed a 
combination of a code generator and a model interpreter 
that executes the generator scripts according to the 
current instantiation of the architectural parameters and 
creates the corresponding pure declarative model. The 
approach is detailed in the following sections. 

 
2. Generative Modeling 

 
Let us illustrate generative modeling through an 

example. Data parallelism is often utilized in image 
processing. Consider, for example, the signal flow of a 
convolution running on four processors as shown in 

Figure 1. The input image is split four ways, the 
convolution is carried out in parallel on the subimages 
and then the results are merged to form a single image. If 
the number of available processors changes, the signal 
flow model needs to be modified to match it. However, 
the structure is quite regular, it is natural to express it in 
an algorithmic manner as a function of the number of 
processors.  

 

Figure 1. Data Parallel Convolution 

Consider Figure 2. It shows the same components as 
Figure 1, but the actual signal flow is missing. Instead, 
the components are connected to a generator block 
called SplitAndMerge. There is an architectural 
parameter connected to it also (called NumProcessors) 
that have a numerical attribute (not shown). Generators 
have a textual attribute containing the generator script 
that describes the desired model structure utilizing the 
architectural parameters, in this case NumProcessors.  

 

Figure 2. Generative Model 

Executing the generator creates the required signal 
flow model. When the number of processors changes, 
the value of NumProcessors is the only thing that needs 
to change. This is certainly easier and less error-prone 
than manually redrawing the models to reflect the 
change. In the remainder of this section we describe how 
this is actually accomplished emphasizing how generative 
modeling can be easily added to any domain-specific 
language using our technology. 



Figure 3. Generative Metamodel 

2.1. Generative metamodel 
 
Model Integrated Computing employs metamodels to 

define domain-specific modeling languages [1]. 
Metamodel composition is utilized to allow the 
combination of existing languages to form more 
complex ones. Metamodel composition simply means 
taking two or more metamodels and specifying relations 
among some of their modeling concepts [6]. These 
relations define how models in the original languages can 
be composed together in the new language. 

Figure 3 shows the metamodel specifying generative 
modeling. It is only a partial metamodel, i.e. it does not 
define a meaningful modeling language in and of itself. It 
was specifically created, so that it can be composed with 
any other metamodel to add generative modeling 
capability to the corresponding modeling language. 

The key concept is the use of generic objects acting as 
placeholders - objects that are not completely defined in 
the generative metamodel. These objects will be fully 
defined only after metamodel composition, i.e. after the 
user decides how she wants to enable generative 
modeling in the target domain-specific language. Even 
though the placeholders are not fully defined, we can 
specify all of their properties related to generative 
modeling. Furthermore, there are several modeling 
concepts that are completely specified in the generative 
metamodel; these are specific to generative modeling 
and do not need to be composed. 

Consider Figure 3. The main object from the 
generative point of view is the Generator model 
containing GenStructuralPorts and GenParameterPorts. 
These ports can be connected to objects from the user 
defined metamodel (to be composed) and to architectural 
parameters (GenParameter) respectively. The Generator 

model has the GeneratorScript textual attribute that will 
contain the algorithmic specification of the desired 
model structure. 

The abstract object OutsideObjectPlaceholder is 
introduced to define the connectivity between generators 
and objects from the user defined metamodel through 
GenStructuralConnections. Containment is modeled 
using the ContainerPlaceholder model. This is where 
generative models can be contained in the final target 
environment. 

An important concept for the reusability of generators 
is the GeneratorReference. As you can see in Figure 3, 
Generators are not contained in any other models; they 
are standalone. In fact, a generator script can only refer 
to its own ports (structural and parameter) and has no 
knowledge of the “outside world,” where and how it is 
being used (for a more detailed description, see section 
4). Generators capture structural information only, so a 
SplitAndMerge generator model can be used without 
modification in any domain-specific language from 
signal flow through ADLs to state machines. Therefore, 
it is not Generator models that are inserted into domain-
specific models, but references to Generators. 
(References are just like pointers in programming 
languages.) This enables using the same Generator model 
in different models using different architectural 
parameters.  

For example, the SplitAndMerge object in Figure 2 is 
a reference to a SplitAndMerge generator model. Many 
such references can exist in the same model hierarchy. 
Every such reference can be connected to different 
objects and different parameters. Furthermore, copies of 
the same SplitAndMerge generator model can exist in 
different models in different languages. 



 

Figure 4. Hierarchical Signal Flow Metamodel 

3. Metamodel Composition 
 
Let us illustrate the process of adding generative 

modeling capability to an existing domain specific 
language through the image processing example. The 
metamodel of the hierarchical signal flow modeling 
language used in the example is shown in Figure 4.  

 

 

Figure 5. Metamodel Composition 

Compounds are the composite models in this 
language; they can contain signal flow graphs themselves. 
Primitives are the leaf nodes in the hierarchy; they are 
the elementary signal processing components whose 
functionality is captured using a traditional programming 
language in a textual attribute. Both Compounds and 
Primitives have input and/or output ports called 
InputSignals and OutputSignals, respectively. They can be 
connected through DataflowConn connections. 
Processing models and Signal atoms are abstract 
components that help keeping the metamodel clear. 

Figure 5 shows the metamodel that composes the 
signal flow language with generative modeling. The most 
frequently used technique in metamodel composition is 
inheritance. Here Signal inherits from 
OutsideObjectPlaceHolder, so that InputSignals and 
OutputSignals can be connected to StructuralPorts of 
Generator references. Compound inherits from 

ContainerPlaceHolder, so that Compounds can contain 
generative models. 

In general, the user needs to decide which kind of 
objects should be able to participate in generative 
constructs and what models should contain these 
constructs. Then inheritance can be used to derive the 
generative capabilities from the placeholder objects. One 
way is to use simple inheritance as shown in Figure 5. 
Another option is to introduce a new concept, such as 
GenerativeCompound, and use multiple inheritance, for 
example to derive it from both ContainerPlaceHolder 
and Compound. 

 
4. Generator Execution 

 
The final representation issue concerns the generator 

script itself. There are many choices available for the 
language. For practical reasons, as GME uses Microsoft 
COM for component integration, we decided to use C++ 
with an API developed specifically for generative 
modeling in our prototype implementation. 

The most convenient feature of this API is that the 
name of each structural port of the generator is 
automatically resolved to the object that is connected to 
the given port. Similarly, the name of each parameter 
port denotes an integer variable whose value is set to the 
value of the connected architectural parameter. 

In fact, this generative API is just an extension of our 
high-level interpreter API for GME called the Builder 
Object Network (BON). While COM interfaces provide 
the interpreter writer all the functionality needed to 
access and manipulate the models, it entails using 
repetitious COM-specific querying, error checking and 
handling. To abstract these issues away from the 
interpreter writer, GME provides a collection of C++ 
wrapper classes: the Builder Object classes. When the 
user initiates model interpretation, the component 
interface builds a graph mirroring the models: for each 
model object an instance of the corresponding class is 



created. We refer to this graph as the Builder Object 
Network. The BON API provides all the necessary 
functionality to traverse the models along the 
containment hierarchy or any of the associations, to 
create and delete models and to get and set attributes, 
among others. 

To simplify generator script writing, the generative 
API adds two groups of functions: one for duplicating 
model objects in a variety of ways and another for 
creating connections more easily. We present a sample 
script in Section 5. 

Generative
Models

Declarative
Models

Stage 1

Stage 2

Generator code

 

Figure 6. Generator Execution 

Resolving generative models is a two-stage process as 
shown in Figure 6. First, code is generated for all 
generators and all generator references. This code 
becomes part of the second stage model interpreter that 
executes the generators and creates a new model 
hierarchy; one that has no generators, only pure 
declarative models. These models then can be used as any 
other domain model, i.e. all original model interpreters 
that were developed for the domain before generative 
capabilities were added are still fully supported. 

In the first stage, a function is generated for every 
generator. The function body is the generator script as 
specified in the models. The argument list of the function 
mirrors the ports of the corresponding generator model; 
there is an argument for every structural port (of the 
generic FCO type) and one integer argument for every 
parameter port. 

 There is also a function generated for every generator 
reference, i.e. for every actual use of the generator. 
These functions are responsible for traversing the 
connections that are attached to the corresponding 

generator reference and obtaining the values of the 
architectural parameters. Then they simply call the 
generator function with the appropriate argument list. 

These two sets of functions are compiled and linked 
together with the second stage model interpreter. This 
component traverses the models from the top down, 
creates the mirror image of all objects in a new blank 
root model and executes all generators, which, in turn, 
create new model objects. Note that generator execution 
is carried out in a bottom up fashion in the model 
containment hierarchy for efficiency reasons. This 
ensures that models created by the generators do not 
themselves contain generators that would need to be 
executed possibly multiple times. 

 
5. Illustrative Example 

 
Consider the data parallel image processing 

application introduced in Figure 1 and its generative 
representation shown in Figure 2. The generator script of 
SplitAndMergeGen is shown below:  

 
#define MAXCHANNELS 32 
 
if (Num < 1 || Num > MAXCHANNELS) 
  return; 
 
Atom  dst[MAXCHANNELS]; 
Atom  src[MAXCHANNELS]; 
Model proc[MAXCHANNELS]; 
 
std::string OutName= Out->getName(); 
std::string InName = In->getName(); 
 
dst[0] = Atom (Dst); 
src[0] = Atom (Src); 
proc[0]= Model (In->getParent()); 
 
for(int i = 1; i < Num; i++)  
{ 
 src[i] =GAPI::portDup(Atom(Src),i); 
 dst[i] =GAPI::portDup(Atom(Dst),i); 
 proc[i]=GAPI::modelDup(owner,proc[0],i); 
} 
 
for(i = 0; i < Num; i++)  
{ 
  GAPI::connect(owner,  
    std::string("DFC"), 
    src[i], 
    proc[i], InName); 
 
  GAPI::connect(owner, 
    std::string("DFC"),  
    proc[i], OutName,  
    dst[i]); 
} 
 



Stage 1 of the interpreter creates the following 
function header for the script: 

 
void SplitAndMergeGen( 
  Model owner, 
  Object Dst, 
  Object Src, 
  Object Out, 
  Object In, 
  int Num 
) 
 
and the following wrapper function for the generator 

reference SplitAndMerge shown in Figure 2: 
 
void SplitAndMerge(Project pr) 
{ 
 Object owner =  

Component::FindPort(pr, 6500000046); 
 

 Object Dst =  
Component::FindPort(pr, 6600000093); 
 

 Object Src =  
Component::FindPort(pr, 6600000092); 
 

 Object Out =  
Component::FindPort(pr, 6600000095); 
 

 Object In =  
Component::FindPort(pr, 6600000097); 
 

 int Num = GenParameter ( 
 Component::FindPort(pr, 6600000085) 
) -> GetValue(); 

 
 SplitAndMergeGen(owner, 
   Dst, Src, Out, In, Num); 
} 

 
These functions become part of the Stage 2 

interpreter. As it traverses the models, it eventually calls 
the SplitAndMerge function that finds all necessary 
objects that are connected to the generator reference, 
obtains the value for the Num parameter, and calls the 
SplitAndMergeGen function with the appropriate 
arguments. 

The generator script above first verifies that Num falls 
within the acceptable range. Then it creates arrays of 
object pointers to refer to the output ports of 
SimpleSplitter, the input ports of SimpleMerger and to 
the Convolution models. Please refer to Figure 2. It 
initializes the first item of each array with the object that 
exists in the current model. Then it creates the necessary 
Num-1 many objects for each category. Finally, it makes 
the appropriate signal flow connections. 

 

Conclusions 
 
We presented an approach to generative modeling 

where architectural parameters and generator scripts are 
employed to specify model structure. The models are 
then used to automatically generate a declarative 
representation corresponding to a particular parameter 
instantiation. Generative modeling is particularly well 
suited to represent regular model structure and adaptive 
systems. 

The primary design goal of our technique was 
reusability. This is accomplished by providing the 
generative modeling capability in a domain-independent 
fashion. The generative representation methodology is 
captured in a metamodel that can be easily incorporated 
into any domain-specific language through metamodel 
composition. The interpretation of the generative models 
is done through a two-stage domain-independent code 
generator/model interpreter. 

Furthermore, the generator models and their scripts 
are also reusable within a model hierarchy or even across 
different domain-specific modeling languages, because 
the generators are self-contained modules that rely on 
generic model structure only and have no knowledge of  
and hence, dependence on any domain-specific concepts. 

The ease of adding generative modeling capabilities to 
any modeling language was clearly demonstrated by the 
example. The only work that is needed is to specify 
where in the modeling language the generative 
capabilities are desired. This is a testimonial to the 
strength of Model Integrated Computing (MIC) in 
general, and the extensibility of the Generic Modeling 
Environment (GME) in particular. 
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